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Abstract

This project analyses how dimensionality reduction can be per-
formed on highly covariate biological traits. The geometry of the
spaces in which these traits reside are often highly non-linear and
thus a more novel approach than classical dimensionality reduction
algorithms is required. The goal of these algorithms is to minimize
the distorting effects of the implicit linear approximations performed
on the surface of curved geometries. We first investigate the deep
theory connected to both non-linear geometries, as well as the con-
tinuous trait models that model evolution as a stochastic process.
Following this theory, we then propose two new algorithms; The first
is a simple adaptation of a previously know algorithm of Polly et al.
(2013) to curved domains. The second is similar to ordinary PCA
except that it considers small increments of a possibly non-linear
brownian motion process, whilst implicitly removing the effects of
biological covariance. We apply both our two new methods, as well
as previously known methods to a range of synthetic datasets for vi-
sual comparison. Finally we apply our method to a dataset of traits
from birds, AVONET (Tobias et al., 2022), and conclude that it does
provide a similar estimate to the algorithm of Polly et al. (2013), but
has additional flexibility built in.
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1 Introduction

If you take any introductory course or education in machine learning, chances
are that you have probably seen PCA. It gives the user a convenient way of
visualizing very high dimensional data in a lower dimensional space. This
is far from the only dimensionality reduction algorithm, but as we will later
discover, it synergizes well with normally distributed variables. There are
however limitations that make PCA unideal when we have correlated samples,
phylogenetic trees will be one such case.

When a set of species evolve in an isolated system under some evolutionary
process, it is evident that some species go extinct, while other evolve new
traits, or refine others. The traits of one species can be assumed to be passed
on to the next generation, with some variation between generations. We call
the record of species and their evolution a phylogeny. Essentially, it is a
simple tree, that carries information about the time of which species split up
and form new ones. As is the case under evolution, some traits are naturally
advantageous to reproduction. Individuals of a species that posses such traits
will thus have a higher probability of passing those exact traits onto the next
generation.

Sometimes, there are two incompatible traits that are both more advantageous
than the norm in the previous generation. A simple example of this would be
a species of bird which at some point develops one type of beak specialized in
hunting prey A, and another specialized break for hunting prey, B. A single
individual cannot have both beaks at once (or at least it probably would not
be something expected), however it is still better to have either beak, than the
type of beak previous generations had. This leads to what is commonly referred
to as disruptive evolution in biology, and is what can cause one species to
become two over time. Another common reason for one species to become two,
is an isolating factor, where suddenly not cross-breeding can occur. This would
be the case if a set of individuals from a species moved elsewhere geographically
for example.

As we will see throughout this project, one of the most popular ways of mod-
elling evolution, is as a stochastic process that has an underlying gaussian
distribution. We think of each species as developing randomly but indepen-
dently, until certain splits occur which transform a single species into the
starting point of two or more new species. A large downside which we will
see is central to this project, is that when we consider any two species with
some ancestor, their traits are not independent. A simple example of this, is
the probability of the closest relative to some bird species having a beak. It is
very unlikely that the relative itself does not have a beak, as it was most likely
formed as a part of a common ancestor. We think of this trait as being due
to common descent, where their beak was evolved over a lineage of ancestors,
and then passed onto both species.



From a mathematical perspective, this makes visualization of traits that can
be measured numerically, much harder. The problem is that whilst some traits
may have natural correlation, we might over- or underestimate that correlation,
due to the correlation that comes solely from the common ancestor of two
species. Typically when performing PCA, we assume that all input vectors
are independent samples of some correlated variables. In this project, we will
see two methods of circumventing this.

We assume the reader of this project to have masters level knowledge of math-
ematical analysis and data science. We will only introduce the absolute basics
of biology, as the focus of this project will be on modelling the evolutionary
process mathematically. For this reason, we do not assume the reader knows
the basics of biology.

First, we will see a method that aims to remove the covariance that comes
from two species sharing a common ancestor. We present this method based
on Polly et al. (2013) in section 5.2. We also propose a completely new way of
performing PCA on phylogenetic trees, which considers the many small scale
changes in a species. Whilst the result should not differ from the algorithm of
Polly et al. (2013), we do conjecture that this method is more robust to the
distortions that arise when dealing with highly non-linear data.

As we will see throughout this project, the non-linearity of traits is something
that is central to the analysis of said traits. It is common, and also the case
with Polly et al. (2013), to use landmark points to represent morphological
traits of an individual in a species. The set of landmarks on a skull for example,
does not have any immediate vector space structure. Taking the mean of
two landmark sets does not guarantee that the result itself is a meaningful
landmark configuration.

Although this example will be slightly exaggerated to convey the idea, it does
illustrate the problem with blindly applying linear statistics to non-linear data.
Consider the set of squares with side length 2, with center at (0,0). We could
consider these as 4 landmarks points for some very square species, which we
wish to compare. Say now that we sample two squares t1,ts, and calculate
their mean in a pairwise manner over each point i(¢; + t). The result is
visualized in figure 1, and as we can see, the mean square is suddenly scaled
differently than other squares, giving what could have been a possibly wrong
conclusion. The reason why we say this example is exaggerated, is because it
is commonplace to first align points using procrustes. This does help in this
instance where all points can be aligned perfectly, but that is not always the
case.

In section 5.4 we show how the method of phylogenetic projections can be
applied to non-linear data, by adapting it to a geometric structure called
a manifold. The resulting algorithm is similar to the algorithm of section
5.2, with only key parts exchanged. We also briefly discuss how one might



Figure 1: The mean of two squares does not preserve area

generalize our own algorithm to these non-linear geometries, and why it should
be better suited.

In this project we introduce mathematical concepts that help us treat these
kind of data. We will use a structure called a manifold and wish to introduce it
in a way such that the reader feels somewhat comfortable with its application.
Choosing what to cover and what not to cover, has been a hard choice. The
overall aim when introducing new concepts is to cover them fairly rigorously
if they are of use to the project. If we feel that a concept is mostly auxiliary
or perhaps only used briefly, we do lack some rigor. An example of this is
the definition of second-countability in the introduction of a manifold. Even
though it is at the core of the definition of a manifold, we did not feel that
it was important enough for the conceptualization of a manifold. The notion
of local homeomorphisms are absolutely central in this project, and for that
reason we cover it more deeply.

After introducing the notion of a manifold. We will investigate how we can
mathematically model the process of evolution, as as stochastic process. We
show its general definition both in linear and non-linear geometries, and its
deep connection with the gaussian distribution.

We then show how we can use apply this model to subsets of the evolutionary
tree called phylogenies, and go into details about different ways of viewing and
parameterizing distributions over them.

We then look at 4 different variants of principal component analysis, each
adapted either to a non-linear geometry or to highly covariate data, or both.
We provide our own algorithm, which is adapted to both settings at once. Af-
ter this we propose another algorithm which works locally rather than globally,
which should reduce the inherent estimation error that arises when approxi-
mating curvature with flat spaces.



2 Representing data as points on a manifold

When dealing with data in machine learning or statistics, we often make many
assumptions about the structure of the space in which data points reside. Let
T1,%9,...,T, € U be a set of data points sampled from some space U. For
many practical purposes, U = R¢, which has many convenient properties,
such as %Z z; €U, v; +x; € U and cx; € U. Properties similar to these are
often used in many statistical algorithms but as will be seen throughout this
project, is not something that we can generally assume. To see an example
of one such case, consider U = S' = {v | [[v]]> = 1,v € R?}. One could
imagine the elements of this set as being the directions of movements observed
in some 2d ants. Say now, we observe n ants and sample their movement at
any given time. A natural question could be, what is their average direction
of travel? The answer to this question is expected to be in U, but %Z x; is
not guaranteed to be.

One may also notice if we only sampled two ants going in opposite directions
(one north, one south), the answer to this question is ambiguous, since both
east and west could represent what we would intuitively call average direction.
The space in this example however, does have significantly more structure than
an arbitrary set, it simply lacks the familiar linear structure. A concept that
will be formalized later is the concept of local structure, which is innate to the
geometric object we call manifolds. If we consider any point z; € S, we can
imagine zooming really far in and observing the space around x;. If zoomed
far enough, this space resembles a line, which we know has linear properties.
This, as we will see later, becomes a key concept of manifolds.

The introduction of manifolds is motivated by examples like these, where linear
structure is too harsh of a requirement, but where we still want to quantify the
geometry of the space. This project aims to examine and provide a detailed
description of classical algorithms in this new setting, as well as fill in the
mathematical detail required for understanding them. Our choice of data
will mostly be of biological nature, as it is modeled very well by riemannian
manifolds.

2.1 An introduction to Topology

To understand how we formalize the local structure of a manifold, we need a
notion of both neighborhoods and continuous maps. In this section we will
give a brief introduction to the absolute basics of topology. It is assumed the
reader is somewhat familiar with the notion of metric spaces, as well as basic
topological concepts such as open sets and ordinary continuous maps on the
form R™ — R™.



In topology we are interested in defining the notion of open sets of an ambient
space X. We do this by simply defining any subset U C X to be open iff
U € T where T is called the topology on X (Munkres, 2000).

Definition 2.1 (Toplogy). We say any collection of subsets 7 is a topology
on X iff

1. {g,X} CT.
2. Any possibly infinite union of elements in 7, is itself an element of .

3. Any finite intersection of elements in 7, is itself an element of 7

Construction of topologies is of little interest for this project, however we
encourage the reader to simply think of a topology as a collection of all the open
sets on X. With this, we can be very precise when defining locality around a
point z € X. A very convenient definition, is the notion of a neighborhood.

Definition 2.2 (Neighborhood). Consider the set X equipped with topology
T. Any open set U € T is a neighborhood of z € X iff x € U.

This definition is used widely throughout topology, and will be central in the
definition of a manifold. Notice that there is no restriction on the ”size” of a
neighborhood, we simply require it to be open and contain a specific z.

The choice of 7 will lead to various different properties of X, but for our
purpose we can think of 7 as the collection of all sets we would ”usually”
consider open in a standard metric space (in this case T is called the metric
topology on X). We say the pair (X, 7T) is a topological space, and when we
define open mappings, it will be between two topological spaces.

Definition 2.3 (Continuity). Consider topological spaces X and Y. We define
any map f: X — Y to be continuous iff f~*(V) is open in X where V is open
inY

That is, we define any function whose preimage of an open set, is itself open.
This definition tells us that the continuity of a function does not only depend
on the function itself, but also on the topology on the spaces it maps between.
A relevant example is where the topology on X is the discrete topology, defined
as Tx = P(X), where P is the power set. In this topology, every subset of X
is open, and thus every map from X is continuous, since the preimage of any
map from X is always open.

We are now ready to define a key concept in manifolds; the homeomorphism.
One of the classical examples people think of when they hear topology, is the
statement that a coffee cup is the same as a donut. While the statement itself
is mystifying, what is really meant is that there exists a bijective map be-
tween the two spaces which preserves topological structure. A way of thinking
about this is that we can use homeomorphisms to define equivalences between
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two different topological spaces. Loosely speaking they are what form the
equality signs between topological spaces. To see why, we must first define a
homeomorphism.

Definition 2.4 (Homeomorphism). A bijection f : X — Y is said to be a
homeomorphism iff f and f~! is continuous.

An equivalent statement is the following

Remark. Any bijection f : X — Y where f(U) € Ty & U € Tx is a
homeomorphism.

Proof. Since f is a bijection we have (f~!)~! = f. Let U € Tx, then f~!is
continuous since for any U € Ty its preimage under the inverse is the same as
f(U) which is assumed to be open. f is shown continuous in the same way. [J

We say that homeomorphisms preserve structure, because any open set in
X will have an equivalent open set in Y. We can think of this as mapping
the entire space to another, where all the open sets are preserved. This pre-
serves structure, because in topology, spaces are structured by their open sets.
More specifically properties of spaces are expressed in terms of the respective
topologies.

We say two spaces X and Y are homeomorphic iff there exists a homeomor-
phism between them. This condition can be relaxed, and we will mostly use a
relaxation of this by defining local homeomorphisms.

Definition 2.5 (Local Homeomorphism). A function f : X — Y is a local
homeomorphism if for every point # € X, there exists a neighborhood U of z,
where U is homeomorphic with an open subset of Y.

We note that quite trivially every homeomorphism is a local homeomorphism.
We also say that two spaces X and Y are locally homeomorphic if there exists
a local homeomorphism between them.

2.2 Defining a manifold

With these basic topological tools, we are mostly ready to define a manifold.
We define a manifold M to be a topological space that is both hausdorff and
second-countable, we did not cover these definition and refer the reader to
Munkres (2000). In essence they are constraints, such that the topology is
well-behaved. More importantly for this project will be the last condition

Definition 2.6 (Manifold). We say a second-countable hausdorff space M is
an n dimensional manifold if it is locally homeomorphic to R"™

While this definition may not give an immediate intuition of what a manifold
is, we can revisit the 2d ants of the introduction. If you asked any ant on
planet earth whether they think earth is flat or has curvature, they would
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most likely think it is flat. From their perspective, they are living in a plane,
and probably have no reason to believe otherwise. Since ants are really small,
we can imagine looking at an ant a on the sphere M = S?. Since S? is a
manifold, we know that there must exist a neighborhood U around a which
is homeomorphic to a subset of R2. Intuitively this means that from the ants
perspective if we zoom in to the neighborhood U (and ants are really small so
zooming makes sense) the structure of the space is equivalent to a subset of a
plane.

Lets say two ants a and b live in two different countries sharing a common
border. We might ask which way a needs to go to visit its friend, ant b. To
solve this problem, a natural and very familiar construction is made; the notion
of a chart. The idea is to differentiably map open sets on the surface of M to
open sets of R%, such that any navigation in M can be done by navigating in
charts. For a to navigate to b, it now simply needs to find a chart that maps a
set U which contains both a and b to R?. We define charts the following way;

Definition 2.7 (Chart). A chart on a d-dimensional manifold M is a C”
mapping ¢ : U — V where U is open in M and V is open in R with C”
inverse ¢~ 1.

This is the general definition of a chart, however for this project we will almost
exclusively deal with differentiable manifolds, and as a consequence put the
additional requirement on any chart ¢, that both ¢ and ¢! are differentiable
(ie. 7 > 1). These charts capture the essence of definition 2.6, as they are the
equivalent of the local homeomorphisms (now diffeomorphisms since we often
require they are differentiable). With these charts, we now have a way to treat
neighborhoods of points of the manifold as if they were open sets of R

In the ant analogy, we can imagine every ant country as having their own
chart, specifying how we could navigate around in the specific country to
which the respective chart belongs. This could be problematic if no charts
overlap, as navigating over any border would be impossible. For this reason it
is reasonable to require charts to both cover M, but also that we can compose
maps without distortion or ambiguity at their overlaps. We call a collection
of such charts an Atlas, which we define the following way

Definition 2.8 (Atlas). We say a family of charts (¢;)i=1.n, ¢; : Ui — V; is
an atlas of M iff

1. (Covering) For any x € M, there exists a chart ¢; with x € U;.
2. (Compatibility) For any charts ¢;, ¢; with U;NU; # @. The composition
¢; 0 qﬁj_l : ¢;(U; NU;) — R? must be differentiable.

This definition together with definition 2.7, gives us a way to represent any
neighborhood of z € M, as a neighborhood of R?. This allows us to obtain lo-
cal coordinate systems, which we know from definition 2.8 must be compatible.
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By this construction we come very close to a coordinate system on M, except
that it is manifested by composition of local systems. More interestingly we
gain properties of R, pulled back to M via its atlas. We first introduced the
topological manifold where we simply required neighborhoods of points to be
homeomorphic to R?. This is the case where charts are C” maps with r = 0.
In a similar fashion we say for r = oo that M is a smooth manifold, and for
r > 1 that M is a differentiable manifold.

2.3 Curves and tangents

Generalizing the notion of a straight line is something that will be of great
importance to us. Notice that charts themselves are not guaranteed to encode
directions as we might imagine. Thus moving in one direction is not as simple
as simply moving in a fixed direction in a chart, and them mapping back to
a manifold. To do this, we will need to define what straight is in a possibly
curved geometry.

We will start by introducing the notion of a curve on a manifold M, which
we then extend with the definition of a straight curve called a geodesic. If
we start with an ordinary curve v : I — R*, where I is sub sub interval of
R, we know from ordinary analysis that we can find its tangent by taking its
coordinate-wise derivative (71 (t),...,7.(t)).

The problem arises when we consider a curve v : I — M. We can no longer
make immediate sense of the coordinate-wise derivatives, since any element
x € M is simply some abstract algebraic entity. We saw in the previous
section how we can induce differentiability to the manifold via charts. We are
going to do exactly that now, and notice that the composition ¢po~y : I — R?,
is an ordinary curve in R? if ¢ is an ordinary curve in R?. It is worth noting
that due to the covering assumption and the openness of the domain of all
charts, we can guarantee that there is a sequence of charts in the atlas that
covers the co-domain of . For simplicity we encourage to simply think of ~
as being mapped under a single chart.

Using these constructions, we can obtain all tangent vectors in a point x € M
which we call the tangent space T, M, by considering the set of all curves
going through x, and taking their euclidean derivatives. Since many different
curves may have identical derivatives, we would technically need to define each
tangent as an equivalence class over curves. Another immediate problem with
this is that have a very explicit presence of charts. We want all tangents to
be completely independent of the choice of charts, which requires some work
to show that this is in fact the case under this construction.

We will mention another way of defining tangents to a point x € M, which
may seem less intuitive at a first glance. As in Pennec et al. (2020), we consider
the set of tangent vectors around a point x, as a vector space of differential
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operators. Around a point z, we can induce a basis via a chart, which is
simply consists of derivations with respect to each coordinate in the chart
%. These do indeed form a vector space, and any vector tangent to the

manifold can be thought of as a linear combination of these.

Central to the definition of a geodesic is the concept of curve length. The
problem however, is that any tangent of a curve ~, is in the tangent space
around some z, which we haven’t defined any metric on. The riemannian
metric is exactly that.

Definition 2.9 (Riemannian Metric). For a manifold M, a riemannian metric
in a point # € M is a positive definite bilinear map (-, ), : T M — T, M. It
induces a norm on a tangent v of x, given by [|v||* = (v,v), (Pennec et al.,
2020).

We say that a manifold that is both smooth, and has such a metric, is a
riemannian manifold. This solves a series of problems, since we now have a
way of measuring the instantaneous speed of a curve going through a point
x. With this we can simply define curve length as we would in an euclidean
domain

Definition 2.10 (Curve Length). For a curve v : I — M and a riemannian
manifold M, the length of v is defined to be

Liy) = / ()t

With this, we can now define the distance between two points s,¢ as the
infimum of lengths of all curves between the two. Locally, these shortest paths
will be straight lines, just as intuition will expect.

There are two ways of trying to define the manifold version of a straight line,
which we call the geodesic. The first approach, is to define it as a curve that
minimizes distance locally. This is inline with the intuition, but the locality
makes it a bit hard to conceptualize.

Another way is to define a geodesic as a curve that minimizes an energy func-
tional. The intuition is that a straight line is the most efficient way between
points on the surface. For a curve « the energy functional £ is defined as

1 b 7112
E(y) = 5 Y1150 dE

Which gives rise to the definition of a geodesic.

Definition 2.11 (Geodesic). Any curve 7 is a geodesic iff it is a minimum of

E()-

This has a connection with curve length, as any critical point of £ is also a crit-
ical point of £. Furthermore geodesics have the property of being self-parallel,
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or in other words, they do not have acceleration (second order derivatives are
Z€r0).

We are now ready to introduce the notion of exponential and logarithm maps,
which will be important when representing points on the manifold as vectors,
and tying into the vector-space structure of tangent spaces.

Given a point x € M, and a tangent vector v € T, M, we can imagine shooting
out a curve v from x, with velocity v, and see where it ends up at time ¢t = 1.

Definition 2.12 (The Exponential map). Given a point z € M, and a tangent
vector v € T, M, the exponential map at a point z, is the point Exp, (v) = (1)
where 7 is the unique geodesic with v(0) = z and v = v.

Similarly we can define its inverse

Definition 2.13 (The Logarithmic map). Given points x,y € M, the tangent
vector v = Log, (y) is the smallest tangent in T, M that satisfies Exp,(v) = y.

These two maps are convenient for mapping between tangent spaces and the
manifold. In a sense we can suddenly linearize neighborhoods of points, via
the logarithmic mapping, since they give a first order vector representation of
the local geometry. This way, it can be used to obtain a representative vector
space for the local geometry of a point.

2.4 The LDDMM framework and a representation of
landmarks

We have now introduced a range of new definitions that all relate to manifold
data, but we haven’t really described how this construction could look in
practice. In our specific case, we will give an introduction to how one might
use shape data in the context of non-linear statistics.

Shape data can take many forms, a common one being a set of k landmarks
embedded in an embedding space @ = R? It could also be a closed curve
tracing the outline of some shape . This makes it hard to endow structure into
a single underlying representation for every single shape instance, and would
lead to non-generalization of algorithms since they would be implemented for
a specific shape representation.

The idea of the LDDMM framework, is to work on the deformation group,
rather than on the representations of shape directly. Instead of asking, how
similar a set of landmarks is to a curve, which would be a very hard question
to answer due to the different representations. We instead ask questions about
the deformation that transforms a set of landmarks to lie on top of said curve.

We define a diffeomorphism to be any map ¢ : 2 — €2 that is differentiable, and
has a differentiable inverse. We often refer to the diffeomorphisms as actions, as
they can alter a shape by considering said shapes representation in the warped
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domain under ¢. Imagine some landmark representation ¢ = (z1,...,x,),
where x; € Q). Then, we can apply an action ¢ to ¢ by simply applying the
action to each landmark. We usually denote the application of an action to a
shape representation via the notation ¢.q. In this example we have

¢.q= (¢)(I1)7 s >¢(xn))

As mentioned, we might also have a shape represented as some closed curve
v : St — Q. We now perform the exact same operation, except to every
single point of the curve . This is done by considering the curve that is the
composition ¢.y = ¢ o . The space of these actions on €2 which we denote
Diff(€2), is itself a manifold, something that we will use frequently.

This differentiable manifold which we will refer to as the diffeomorphism group
Diff(€2), can also be endowed with a riemannian metric, which lets us define
the distance between two shapes, as being the geodesic length between two
deformations in Diff(€2). We do this by having a template shape, and then
representing each other shape, as being a deformation of the template.

The beauty of this representation, is that we can now construct all of our algo-
rithms to work on Diff(£2), and then apply them to any shape representation,
be it a set of landmarks, or a dataset of curves. As an example we may have
two shapes ¢, g2, and ask which action ¢ transforms ¢; into gs, that is to find
a ¢ such that ¢.q; = ¢o. It turns out that this can be framed as an optimiza-
tion problem to find a geodesic in Diff(€2), which illustrates how powerful this
abstraction is.

The notion of geodesics is important when working with the LDDMM frame-
work for problems such as the above mentioned. For this reason simplifications
of the energy functional £ can ease analysis greatly. We do not introduce the
notion of lie groups, however we do note that they are both manifolds and
groups where the tangent space around the identity map Id has desirable prop-
erties. To use the properties, we need to find a way to transport tangent vectors
of arbitrary tangent spaces Ty Diff (§2) to the tangent space TigDiff(€2). First we
consider the notion of a right translation, which we define to be Ry = 1) o ¢.
Along with its pushforward (R;). which is the derivative of Rys. With this
there now exists a unique vector h € TigDiff(Q) for each u € T,Diff(Q2) were
(R4)«h = u. This induces an inner product on each T;Diff (€2) which is simply
the inner product in TiDiff(©2) (which is defined) of the translated vectors.
This gives what we call a right-invariant metric, and as we will see when
introducing brownian motion, invariance of a metric can simplify definitions
greatly.

Take any curve ¢(t) in Diff (©2), now we can associate with it a family of vector
fields by translating the time-dependent tangents v(t) of ¢(t) to TiaDiff () via
v(t) = (Rg-112))«¢'(t). Now, we can simply define the energy of any curve as a
function of v(t), since it as mentioned previously is an element of what we call
the lie algebra T1gDiff (€2), and thus already has a norm defined. We can define
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the simple squared norm [(v) = [|v|]?, and we thus get the energy equation
again in terms of elements of a lie algebra

Via a series of simplifications, this gives rise to what is called the Euler-
Poincaré equations which produce a new interpretation of the structure of
Diff (). Although we do not show these explicitly, we note that we can con-
struct diffeomorphisms from a vector field m(t) on €2, which we call the momen-
tum field. It is closely related to the velocity field v(¢), and for the landmark
case, the momentum field arising as solution to a range of problems, will be a
local initial momentum of each landmark point.

3 Brownian Motion

A tool which will be used repeatedly in this project, is Brownian motion. It
was originally developed as a model used to describe the movement of small
particles in fluid, which collided with other objects (Resnick, 1992). In this
project, we will use Brownian motion as a model for how traits evolve over
time. It has an underlying connection with the normal distribution, which
makes it convenient for the manifold settings, where it gives us a natural way
to sample from a normal distribution. Brownian motion also has an array of
useful properties, which has been central in previous analysis of evolution, but
also some of which we will use when introducing our own projection algorithms.

We will start by defining what a stochastic process is, following the definition
of Ross (1996). Consider a simple ant, each day, it wakes up and takes exactly
one step to the right, or one step to the left. Let p be the probability that
the ant walks right, and 1 — p the probability that it walks left. We are now
interested in observing where the ant ends up at any timestep n > 0. We
can think of the decision of the ant at timestep ¢ > 0, X; to be 1 if it walks
right, and —1 if it walks left. If we want to know the location of the ant at
timestep n, we simply sum up all of the decisions it made at each timestep
up until time n. Thus, we define the posititon at time n, S, = >, | X;.
Intutitively, the set of all S,’s will act as a traceroute for the ant. If we run
this experiment with p = 1/2, and plot S,, vs n, we get figure 2. What we see,
is that the ant ended up somewhere far on the left. We call the set of all of
these steps, S = {S,,n > 0} a stochastic process. In other words, we define a
stochastic process to be the set of some random variables (will be rigorously
defined later on). In our case, each increment is trivially countable since the
index set I = Ny used to index .S, is itself countable. This is however not
generally the case.

We will now look at what we will refer to as continuous-time stochastic pro-
cesses, where the index set [ is a compact connected metric space. With this,
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Figure 2: Plot of S,

we can also generalize the stochastic process to be any set X = {X(¢),t € I}.
Before we get any further, we will first introduce the notion of a random vari-
able similar to Ross (1996), as it often is taught in a very vague sense.

Definition 3.1 (Random Variable). Given a probability space (£, F, P), a
random variable X :  — R is a function that maps elements of the sample
space 2 to a real value. We also require that it has a measurable probability
of some set of events, which is done by the additional requirement that for
each real z, {w: X(w) <z} € F.

This definition may seem alienating for those unfamiliar with measure theoretic
concepts, who most likely where taught that random variables just magically
took on different values. Intuitively we can think of random variables as being
functions that lets us pull back values of R such that they can be assigned a
probability by P. It turns out that this concept gives lead to the probability
of a random variable X taking on values in some measurable set A C R. We
say the the probability of X taking on values in A is given as the push-forward
measure px(A) = P(X7!(A)). This is rather intuitive, we simply find all
the elements in the sample space that makes X take on values in A, and then
measure that exact set. We are often interested in what we call the probability
distribution of some rv. X we define it as the probability that X is at most
some other value z.

Definition 3.2 (Distribution of a random variable). Given a probability space
(Q, F, P), the distribution F'(z) of a random variable X, is given as

F(z)=P(X <z2)=PX '({a:a<2x}))
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And now elegantly, we can define the probability density for a random variable
X.

Definition 3.3 (Distribution of a random variable). Given a probability space
(Q, F, P), the probability density f(x) of a random variable X, is the function

f that satisfies
px(B)z/ dP:/fd)\
X-1(B) B

Where X is the standard lebesgue measure. If no such function exist, we say
X is a discrete random variable. If f does exist, we say X is a continuous
random variable.

The solution to this equation is given by the radon-nikodym theorem, and is

d(P.X1Y)

==

Where j—i is the radon-nikodym derivative. This pops right out of the theo-
rem because we have a change of variable with respect to the push forward
measure P. X!, For those new to measure theory, it is natural to think of
the probability density of a random variable as the ordinary derivative of the
distribution.

With these elementary definitions in place, we can now be a bit more precise.
When talking about a stochastic process, we define it the following way.

Definition 3.4 (Stochastic Process). Given a probability space (2, F, P) and
an index set I, a stochastic process X is a collection of random variables

X ={X(t,w), tel}
where w € Q and X(¢,-) is a random variable.

Although this definition is more mathematically robust, it is slightly more
heavy to work with. For simplicity, we will abbreviate and simply write X =
{X(t), t € I}, where we hide that X (¢) is in fact also a function of w. This is
similar to how we often simply abbreviate random variables X or Y, when we
infact mean X (w) and Y (w). We recommend the reader to not think too hard
about the importance of the measure theoretic foundation, but rather think of
it as a mathematical practicality in some cases. It simply gives the required
rigorousness, and lets us work under a well studied framework that is measure
theory.

This does give a more clear sense of what it means to sample a path (Lindgren
et al., 2013). Essentially, the entire process is parameterized by some w € €,
this means that we can pick out one such w, and obtain the entire process
by evaluation of the random variables. This is impractical when working with
processes computationally, since single steps cannot necessarily be evaluated at
a time. We will look at a class of stochastic processes which have independent
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increments. This allows for much easier sampling, since each increment can
be sampled independently.

Definition 3.5 (Independent Increments). Given a probability space
(Q,F,P) and an index set I. A stochastic process X = {X(¢),t € I} has
independent increments if and only if for any finite increasing subsequence
(t;)i<n C I, the differences.

X(tQ) - X(t1)7 ceey X(tn) - X(tnfl)
are independent random variables.

Processes with this property have a series of advantages from both an analysis
point, but also in terms of the practicality of dealing with them computation-
ally. Another property that we want is what we call stationary increments, we
define it as so;

Definition 3.6 (Stationary Increments). Given a probability space (€2, F, P)
and an index set I. A stochastic process X = {X(t),t € I} has stationary
increments iff for s, € I where s <t

X(t) - X(s) = X(t — s)

With all of these new tools, we are now ready to define Brownian motion.

3.1 Brownian motion in R¢

Lets revisit the ant process visualized in figure 2, and lets imagine we have
gotten a bit bored of watching the ant constantly, as it only moves once per
day. To make it a bit more exciting, we decided that it would be way more
interesting if it moved half as far, but twice a day! Thus if we let the index
set I, = Ng, we now have S, = > ., X(t)/2. Lets imagine this was a
great success, and the experiment got significantly more exciting. We then
ask ourselves if we could make it move even more, we thus decide that we can
scale this arbitrarily. That is, if X; for ¢ € I is a random variable that is 1 if
the ant moves right and —1 if it moves left. We then decide to let it move Ax
units per At time. In the case before we had Ax = At = 1/2. We now let
I =Ny, and as before have X; = 41 for ¢t € I. For any A = Az = At we let

i<t/A

This way, we can first sample the random increments X;, and then afterward,
investigate how the scaling affects the process. Simulating the follow processes
for different A is shown on figure 3 This figure illustrates the problem with
letting Ax = At. We see that

E[S*#)] =AY EIX] =0

i<t/A
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Figure 3: Plot of S2(t)

And now

Var(S2(t)) = A? ) Var(X;)
i<t/A
t
_ A2 A2 AL
=A?) 1=A R =At

i<t/A
The problem here is that if we let A — 0, then Var(S®(¢)) — 0, and the

process is completely trivial. If, however we do separate the terms, such that
we define

X(t) = AxZXt/At

Then similarly

E[X(#)] =0
Var(X(f)) = (M)?Ait
We see here that if we have
(Az)?

=0’ = Az = oV At

At

then suddenly we have control over the variance of our process. By the central
limit theorem, we get that in fact X (¢) is normally distributed with variance
o%t, if we let the number of steps tend to infinity. This is a highly impor-
tant property, because we have now found a way to create gaussian random
variables (out of seemingly thin air) by simply letting the number of random
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steps X; go to infinity, and At go to 0. What we got is what we call Brownian
motion. The existence of this limit is not completely trivial, and we refer to
Ross (1996) for a proof. We can now come with a rigorous definition;
Definition 3.7 (Brownian Motion). Any stochastic process X = {X(t), t €
R*} is said to be Brownian motion iff.

1. X(0)=0
2. X has stationary independent increments

3. X(t) is normally distributed with variance ot

If X is Brownian motion, then X (¢) will be a continuous function X : [ — R
(Ross, 1996). This also makes it clear why we required I to be compact and
connected, since there would be a range of topological complications other-
wise. Intuitively, X is nowhere differentiable. It is in a sense similar to the
weierstrass function, where we can think of it as a fractal, allowing us to zoom
infinitely far in on the function. This also makes sense in the ant analogy; if
we keep asking the ant to move more often, then at its limit, it’s going to move
continuously. If we conduct the same experiment as in figure 3, we will get
something (figure 4) that is much closer to what we expected when taking the
limit of a random walk. There are a series of properties that makes Brownian

300

100

Figure 4: Plot of X (¢) for different At

motion convenient to work with, the first of which being rather trivial, but
central to our later analysis of projections on trees.

Lemma 3.1 (Brownian normalization (Ross, 1996)). If X (¢) is Brownian mo-
tion with variance o%¢, then X’(t) has variance o5t where

X'(t) = ?X(t)
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This lemma also gives lead to what we will refer to as standard Brownian
motion. We define it as any Brownian motion X (¢) with variance ¢. This is
convenient to work with, since any Brownian motion with variance %t can be
converted to standard Brownian motion by simply dividing out ¢ via lemma
3.1. Because of this, we will often omit the ¢ when talking about Brownian
motion, because it usually does not affect computation, but simply creates
notational overhead.

A result of the requirement of independent increments, is that given a state
X(c), any future state X (c + t) conditioned on X (c) will be independent of
all past states X (p) for p < ¢ (Ross, 1996). This is useful in the analysis of
phylogenies, as it implies that knowledge of any species in the tree, lets us
consider the subtree rooted at that exact species, independently of the rest of
the tree.

As we will see more of in section 4, we can model the lineage of a certain
species, as a Brownian motion process, with m branching points %1, ..., ¢,,.
Where f(z) is the standard normal density

1

fi(z) = ot exp (—x%/2t)

We obtain the joint density for a sequence of m branching points
X(t1), .., X(ts) from Ross (1996):

f(X(tl)v "'7X(tm)) =
S (X (t1)) fro—, (X (t2) — X (1)) - - Sty (X () — X (tm—1))

This is actually the definition of a gaussian process, which means that the
following also holds for Brownian motion.

Lemma 3.2 (Covariance of Brownian pairs). Where X (¢) is Brownian, the
covariance of X (u) and X (v) with u < v is given as

Cov(X(u), X(v)) =u

This lemma is proven by simply using the independent increments property.
This is however important since for any two species, it implies that the co-
variance of two species u and v which have an ancestral relationship, will have
a covariance that is proportional to the time of the ancestor. It also implies
(although not as directly), that two different species with a common ancestor,
have a covariance that is equal to the time of their first common ancestor.

3.2 Brownian motion on a manifold

In this section, we will show that Brownian motion arises as a solution to cer-
tain differential equations, defined on the surface of a manifold. The problem
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here is construction. Claiming the process that solves a certain PDE is the
one we are interested in, does not necessarily give a feasible way of realizing
such motion.

The differential equation we are interested in, is the heat equation. It turns
out, that if we have a single point of heat ; € R?, then the resulting dispersion
of heat after one unit of time, will be the density of the normal distribution
centered at p. We write this as a differential equation where p(t,y) is the
heat in point y, at time ¢t. If the heat at time 0 is all centered at a single
point 4, then p(0) =4, with J,, being the point indicator function which is 0
everywhere except 0,(p) = 1. The heat equation is then written as

dp(t,y) = %Ap(t,y) (1)

Where Ap(t,y) denotes the laplacian of the function p(¢,y) which is the sum
of double derivatives with respect to each coordinate in y. By Pennec et al.
(2020), with solution p, the density p(1) is the density of A(0,1d). Now, due
to the connection between Brownian motion and the normal distribution, we
get that for any Brownian motion X (¢), the density of a sample endpoint at
time ¢ is given as a solution to equation (1) directly as p(t).

To give an intuition of Brownian motion on a riemannian manifold, we can use
the generalization of the Laplace operator, which we call the Laplace-Beltrami
operator Ay, where g is the riemannian metric. The heat equation is now
similar, but instead specified on the surface of a manifold M

oip(t,y) = %Agp(t,y) (2)

This way, we can think of A, as adapting the transition density to work on
curved geometries. This gives us a concrete way of writing isotropic gaussians
on the surface of manifolds, but it does not yet allow us to write up general
form gaussians with covariance matrices X.

Another problem with this formulation arises. We cannot guarantee that the
solution to this equation is proper however, by Hsu (2008) it may happen that

/ p(ty)dy <1 (3)
M

The consequence is that Brownian motion may not run forever, but will have
a stopping time e. As Hsu (2008) notes, this can only happen if M is not
compact, and gives rise to the notion of stochastically complete manifolds.
We will assume that all manifolds in question are compact, and thus we do
not run into this issue.

When thinking of variables drawn from anisotropic gaussian densities N (p, X2)
in R?, we can describe them as a linear combination of isotropic gaussians via
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the standard euclidean linear latent model(Pennec et al., 2020). We get that
if

y=p+Wz+e (4)

Where W is a d x r matrix,  ~ N(0,Id,) is what we refer to as the latent
variable and € ~ N(0,0%Id,) is some isotropic noise. Then y ~ N (p, ¥) with
Y = WWT 4 0%1d;. We have just seen previously how to generalize isotropic
gaussians to a manifold setting, however summing them is not defined, nor is
the transformation Wz, as there is no global coordinate system.

The next step becomes slightly more involved depending on which type of
manifold we are dealing with. We are now looking for a way to make sense of
the sum of two gaussian variables, aswell as the matrix product Wz. If it is a
Lie group, as in the case of Diff(£2), construction becomes easier. We will first
show how one such construction may look.

Unlike section 2.4 where we looked at constructing a right invariant metric, we
now assume we have some left-invariant metric on a Lie group G. Recall that
a Lie group is simply a manifold with additional group structure, and where
the tangent space around the identity element is a special vector space which
we call the lie algebra g. Since g is a tangent space, it will have some basis
€1,...,€4.

We want some sort of coordinate system such that for any point y € GG, we can
view local neighborhoods in a way that aligns with g. We do this just like in
section 2.4, but this time use a left-invariant push-forward (L, ),. This push-
forward translates vectors of g to T;,GG. With this, we can for each basis element
e; of g obtain a corresponding vector (L, ).(e;), which with parameterization
of y becomes a vector field on G given as X;(y) = (L, ).(e;). Furthermore, for
any y, all vectors X;(y) will be orthogonal, and thus follow what we think of
as a consistent basis for the tangent space.

The beauty of this construction is that we now completely avoid the question
of finding a generalization of (4), as for a d dimensional lie algebra G, we can
simply perform standard Brownian motion in R?, and obtain a corresponding
Brownian motion in G, via the vector fields X;. The process y(t) arise as
a solution to the Stratonovich equation, which is expressed only in terms of
our vector fields X;, the euclidean Brownian motion B(t), and naturally the
manifold Brownian motion y(t).

As mentioned previously, this only works in the case of M being a Lie group.
A case where this is not possible, is the sphere S?. One can consider a single
vector field X;(y). It cannot be continuous by the hairy ball theorem, which
has a quite simple visualization. Imagine each tangent vector X;(y) as a single
hair on S2?, it is impossible to comb the hair of the ball such that there is no
points where two hairs suddenly point in different directions. This makes the
construction simply impossible for this case.
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The plan for writing up Brownian motion on manifolds is to reformulate (4),
in a manifold setting - something we were happy to avoid on Lie groups. We
cannot simply perform Brownian motion in the tangent space of u, since the
tangent space only acts as a first order approximation of the manifold surface.
A better approach, is to define (4) in terms of infinitesimal changes on the
manifold surface. We get the following manifold generalization

dy(t) = Wdz(t) + de(t) (5)

Where z(t) and €(¢) is euclidean Brownian motion. We also enforce that the
process starts in p. Writing (4) as a differential equation, really only helps
with the problem of summing up random variables. We still have an immediate
problem of how to deal with the term Wdxz(t). The problem is that unlike Lie
groups, there is no obvious way of transporting vectors in 7,,M to some other
point T, M. This is problematic because the matrix W is defined with respect
to the basis of T, M.

What we seek is some sort of transport that lets us take vectors in one tangent
space, and transport them to another. There is the notion of a parallel trans-
port which takes vectors of one tangent space, and transports them along a
curve. One could imagine transporting a basis of one tangent space to another
by selecting a curve that goes through the point of interest. This has another
problem, being that the resulting vector is path dependent. This would give
differing W’s depending on realization. There is a way around this problem
called the Eells—Elworthy—Malliavin construction, however it requires concepts
that are out of scope of this project.

4 Phylogenetic trees and random Sampling

In this section, we look at phylogenetic trees where we model the evolution-
ary developments of certain species or sub-species. Evolution has been known
scientifically since the time of Darwin, and to analyse the evolution of groups
of animals, we need a framework to describe this ever-going process. As noted
by Harmon (2019), there are many factors that affect evolution. Both envi-
ronmental factors such the availability of certain food sources, and random
changes in a species DNA can play a deciding role. We aim to construct a
model for this process that explains observations to some degree. Due to how
hard it is to quantify environmental factors, our models will view evolution as
a process separate from the environment.

It is under these processes that change in the biology of species occur, and
where some species go extinct, others grow and evolve. Extinction and early
termination is another topic that can be hard to cover in a model. We will
not consider these cases, and instead simply look at the lineage of a series
of species. Modeling the behaviour of evolution is important to this project.
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We are essentially looking for 2 components; First, we want to model the
"random” drift in one species over time, as a random process where certain
traits has the same probability of changing in two same-sized time intervals.
In reality a combination of genetic and environmental factors take part in this
process. Modeling on a genome directly is a very hard task, and even modeling
a discrete set of genomes or features does not lend itself well in a PCA setting.
There are models such as the MK model (Lewis, 2001), which allow one to
model discrete traits, but for our project we do not consider these traits.

Throughout this project, we will think of phylogenetic trees as a tree graph
G = (V, E) where the edge set E has the pair (u,v) if v is a direct descendant
from u. The exact contents of V', will differ within different contexts, but this
section aims to give a rigid definition of phylogenetic trees and their sampling.
We can think of any u € V to represent the taxon (species) u. The exact
representation of u depends on the setting, in this project we will often assume
that u is represented as a d dimensional trait vector which contain values
for continuous traits. In the case of lizard for example, one could imagine
tail length, weight, lifespan to be a set of features we could be interested in
modeling. The other setting which will appear commonly, is where u is a point
of some riemannian manifold M. For now, we will assume v € R

4.1 Distributions of phylogenies

Most species itself follow some distribution. We generally assume that within
one specific population, there is a degree of randomness to the exact trait
values of any new child. This would lend itself to modeling each species as a
time-dependent family of distributions. However, because representing species
as distributions leads to a lot of overhead in calculations, we assume that any
u € V, is the mean of all traits in the population it represents. The upside of
this is the great simplicity in our model since each species is a simple point
estimate. Suddenly each species which represent many individuals, is collapsed
into a single vector, which makes both inference and sampling easier.

The notation around these taxa may be a bit inconsistent, since at times taxa
are assumed unknown. Unless otherwise stated, we assume that the leaves are
all known and measured quantities, and the inner nodes in the phylogeny are
unknowns. It should be noted that there exists algorithms for estimating the
ancestral states (inner nodes) for a variety of different models, thus it is not
unrealistic to assume ancestral states can be inferred.

As laid out so far, we are interested in giving a point estimate for the mean
of all d trait values in a species, at any given time ¢. In other words for some
species X, we are looking for a function X : RT — RY, such that X (') gives us
the mean trait values for the species X at time ¢’. This should ring some bell,
as the wished for properties are some of the properties of brownian motion.
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To simplify the model, let us first consider modeling a single trait, in other
words, letting d = 1.

When we say that we assume traits evolve under a brownian motion model,
we simply mean that for a single trait X, it can be described as a brownian
motion process X (t) which starts at time 0, and has some scaling parameter o.
As noted earlier, we often omit o, as we in classical PCA can assume a stan-
dardization of the data, which in our case is removing the scaling parameters.
This means, that when looking at a single trait for a single species at current
time ¢, it will by definition 3.7 have the distribution X (¢¢) ~ N (0, o).

This model conveniently lets us approach traits with the assumption that all
increments are normally distributed from the origin. The problem in these
models arise when we consider two or more different species that evolve from
some common ancestor. Lets now consider the simple example of figure 5.
In this figure, 1 and x5 represent two different species, that have a common

to

t1/ \ty
Figure 5: A simple phylogeny

ancestor a. A way to think of this is that we have X (¢), X»(t) as two brownian
motion process with X (to+t1) = x; and likewise for z5. Furthermore we have
Xi(t) = Xa(t) for t < ty, which is equivalent to saying that the two species
had identical traits before and at ¢y. In reality what we really mean is not only
that they had identical traits, but that they were a common species before .

Because of the independent increments property, and the fact that both %y, ¢;
and tg, to are finite increasing subsequences of R*, we can use that a,z; — a
are independent and a,zs — a are independent. Letting A; = z; — a and
Ay = x5 — a we get that we can write x1, x5 as sums of their ancestors

$1ZG+A1
To = a+ Ag

this then means that if we evaluate Cov(xy,x2) we get

Cov(zy,xe) = Cov(a+ Ay,a+ Asg)
= Cov(a,a) + Cov(a, Az) + Cov(Aq, a) + Cov(Aq, Ag)

0

= Var(a) =t
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Where the first two 0 terms are 0 due to the independent increments property,
and the last term is 0 because the increments are sampled in two independent
processes. Every two species x1, x5 will be in an equivalent phylogeny to figure
5 if you remove all other species, thus the above implies that the covariance of
any two species is their time of common ancestry, which in this example is .

As described by Harmon (2019), we could also consider z1, x5 as being drawn
as a single sample from a normal distribution. After all, we know their co-
variance, and we know that they are both normally distributed. Thus, we can
describe the leaves z1, x5 as a single 2/ = (21, 72) ", drawn from a multivariate
distribution with covariance matrix C', where

C— Cov(xy,z1) Cov(xl,xg)} _ [tothl to }

| Cov(za,z1) Cov(za, ) to to + to

Since the matrix C' represents the entire covariance in the phylogeny, we usually
refer to this as the phylogenetic covariance matrix, or just the phylogenetic
matrix.

Now, given a phylogeny, we can simply calculate its covariance matrix C, and
randomly draw a trait value for each leaf, by drawing from the multivariate
normal given by

exp(—z2C ')

P = e ©)

It is very important to note that this model says nothing about the increments
A;, nor the internal states such as the ancestor a in our example. It only uses
the phylogeny to parameterize a multivariate normal via the covariance matrix
implied by the phylogeny.

Now, one could hope that we could simply do this for each of the d traits
that we are modelling, and we would have something useful. This is however
not the case, since that would require each trait to be independent. In reality,
however, two traits such as body mass and height, will most likely be positively
correlated.

Just like we saw the definition of a gaussian process in a single variable brown-
ian motion, it is also possible to construct a multivariate brownian motion, but
where we now simply require that each difference between branching points
corresponds to a vector that is normally distributed with multivariate normal
N(0,tX) where ¢ is the increment of the index between the branching points.
On a very high level, we can imagine replacing the univariate normal dis-
tributions inherent to brownian motion with a multivariate distribution with
covariance matrix X.

The situation now gets slightly more complicated since we both have covariance
between traits due to being traits on two species with some common ancestry,
but also due to the traits simply having an underlying correlation.
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If we extend the notion that multivariate brownian is simply the univariate
brownian process with a multivariate guassian at its core, then we can as
before consider one realization of a phylogeny as a single vector z/ € R"™.
In this vector, the first n entries are the values of the first trait of each leaf,
the next n, values of the second trait and so on. It is not too hard to see
that specifying a gaussian distribution over this vector is exactly equivalent to
specifying a gaussian distribution over n X d matrices, since they are equivalent
under what is commonly referred to as the invertible Vec map, which takes
any n X d matrix and produces an nd vector which is the stack of the columns
into one vector.

If we look at it in this form, and say we want to find the distribution of
some matrix X € R™*? where each row is a leaf taxa, we would simply find a
distribution over Vec(X) as is done by Barratt (2018), where Vec(X') denoets
the concatenation of columns of X into one long column vector. We are going
to construct our distribution with V' € R"¥*"? as our covariance matrix, and
1 as the Vec of the mean matrix. Since phylogenies do not affect the mean
of any trait, we are going to have identical values for the first d entries, the
next d and so on. To simplify calculations we construct a design matrix where
entry i,jis 1if j = L%J and 0 otherwise. We refer to this matrix as the design
matrix and it looks like a simple partitioned matrix where the first column
contains n 1’s followed by n(d — 1) 0’s. In general column ¢ contains n(i — 1)
0’s followed by n 1’s, and again followed by 0’s

10 0
P U o g
00 ..1

With this we can obtain the vectorization of the mean matrix as a matrix
product of the trait mean vector a.

uw= Da

This essentially spreads the elements of a out onto each corresponding trait
in the matrix vector form and does give us a correct mean matrix vector.
While Revell and Harmon (2008) does not formally motivate their chosen
construction of the covariance matrix V', we will try and motivate it via the
definitions of Barratt (2018).

What we are given initially is the phylogenetic covariance matrix C' which
describes the covariance of the individual taxa. Also, we are given ¥ (also
denoted R in a wide range of literature), which holds the covariances between
the individual traits. The question is now, given C, Y, what is the covariance
of entries in Vec(X'). We wish to show in agreement with Revell and Harmon
(2008) that it is in fact V' = 3 ® C where ® is the Kronecker product, defined
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as a direct block matrix product

CLLlB e al,mB
A®B = : :
an1B ... apmB

and perhaps shine a light on where exactly this comes from.

As we would expect, Waal (2006) defines the nd x nd covariance matrix V' as
V = E[(Vee(X) — ) (Vec(X) — )]

By Waal (2006), if we can decompose V' into the Kronecker product of two
positive definite symmetric matrices ¥ = (1;;), ¥ = (0y;) such that

V=XV

then the covariance of columns ¢ and j of X, is given by 0;; ¥ and the covariance
of rows ¢ and j of X is given by ;X!

To show this is applicable to our case, we want to show that
V=xeC

Where C'is the phylogenetic matrix and ¥ is the trait covariance matrix. They
are both trivially p.d.s. so intuitively the covariance of column i and j of X
must be 0;;C and that the covariance of row ¢ and j must be ¢;;3.

This comes from two realizations. When using a single trait model, the co-
variance is simply oC' where ¢ is a scaling parameter for the trait. If we have
a single taxon that is obtained via brownian motion then the covariance is tX
where ¢ is the time of realization, which under a phylogeny would be Cj; given
our taxon was taxon ¢.

If we consider the first simple example of a phylogeny in figure 5, but this time
consider 1, 75 € R? as being multivariate with trait covariance matrix ¥, then
their covariance must be ¢123. This follows a similar line of argument to the
first analysis of figure 5, however we now have a multivariate case. Again we
assume x; = a+A; and x5 = a+A, but where a and A, A, are all drawn from
multivariate distributions with covariance matrices that are scalar multiples
of each other. We get these distributions from the independent increments

property.
a NN(O,toZ) Al NN(O,tlz) Ag NN(O,tQZ)

Previously we used that covariance is additive Cov(X 4+ Y, Z) = Cov(X, Z) +
Cov(Y, Z). This also holds for random vectors, but where Cov(X,Y) is the

!The rows and columns are swapped compared to Waal (2006), due to their vectorization
working on rows instead of columns
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covariance matrix between traits of X and Y
Cov(zy,z3) = Cov(a + Ay, a+ Ay)
= Cov(a,a) + Cov(a, Ay) + Cov(Ay,a) + Cov(Aq, As)

=E[aa"] — E[aE[a]" = ;X = 198

Since t is defined to be ¢15 and the expected covariance under a multivariate
distribution is the covariance matrix of the distribution. This shows that the
rows of X have covariance ¢;;%.

Consider now the covariance of any two traits in X. Each trait belongs to a
row (taxon), let those rows be X;, X;. From the above we know the covariance
matrix of those rows are given as ¢;;¥X. If each of the two traits have indices
r, k in their rows respectively, then position r, k in this covariance matrix must
be their covariance. This implies that the covariance of any two traits X, X
is given as ¢;;0,k.

If we now consider the covariance matrix Cov(Vec(X), Vec(X)), we can trans-
form any index k£ in Vec(X) into an index 7,7 in X via ¢ = £ mod n and
j = |%]. Substituting this in, we obtain

Cov(Vec(X), Vee(X))re = Cov( Xy £ > Xpopn, £ )
= Ck%n,é%no—\_ng_%J

Where we use the shorthand notation & mod n = k%n to salvage some read-
ability. Although this is quite hard to read and understand, some meaning is
there. Since both indices of ¢ are some indices modulo n, the ¢ term in the
covariance matrix of Vec(X) cycles over the entries of C'. Similarly, since both
indices in ¢ are integer divisions, the same term of o is repeated n entries. All
in all this gives us the following block matrix

0'1710 . O_l,dC
Cov(Vec(X), Vec(X)) = : : :
alydC . Ud,dc

Which is identical to the Kronecker product ¥ @ C. Notice, by the earlier ob-
servation by Waal (2006), this also implies that in fact, the covariance between
any two columns of X, is 0;;C, something that would have been much harder
to prove. Waal (2006) now gives a closed form density for a matrix normal on
this form, where’ V =3 ® C' and M = E[X].
F(X) = exp(—3tr(CH(X — M) (X = M)T))

B v/ (2m)d det(C)m det ()1

_ exp(—3 Vec(X — M) TV~ Vec(z — M)))

(2m)nd det (V)

2% and C are swapped because of the different vectorization again.
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This gives a closed form distribution over any multivariate phylogeny, which
can bed used both for inference, and for sampling.

Phylogenies on a manifold work essentially the same way. We simply re-
place the underlying transition density of our brownian motion models, with
a model defined over the surface of some manifold we are interested in. This
is essentially what makes this model so powerful, we can without too much
extra effort, apply techniques to a manifold setting, by simply characterizing
everything as Gaussians and by then using brownian motion.

4.2 Sampling

We have now seen that phylogenetic trees can be thought of as realizations of
brownian motion, as a series of increments in a tree structure, and as a matrix
distribution. The reasons for these different interpretations, are primarily
related to

1. How easy their density is to write up
2. How easy they are to sample

3. How much information they carry

In the case of matrix distributions, they provide a convenient closed form
density, which we can use for inference about ¥ for example. Their downside
is that when sampling them directly, you only obtain a single matrix X that
contains data for the leaves. This is somewhat inconvenient if the aim is to
perform any kind of experiment on the internal nodes of the phylogeny. For
this reason, the closed form densities will mostly be used to perform MLE
of different parameters, given we have observed all leaf nodes. Alternatively
the distribution of nodes in a subtree at any root is also given as a matrix
gaussian, and as such can be used in subtrees aswell.

To conduct some of our comparison experiments we require full trees, where we
have information about all internal states in the tree. To do so, there are two
steps; we must first sample the phylogeny itself, which contains information
about the duration of each generation, as well as where any species splits
into two. Next, we sample the increments over each edge, from a simple
multivariate gaussian with covariance t3.

To simplify notation, for any two nodes u,v where u;, v; denotes their time
of realization respectively, we define e; for any edge e = (u,v) to be ¢, =
vy — ug. We also define the increment over any edge A, = v — u where by the
independent increments property we have A, ~ N (0, e;3). With this in place,
we can think of our sampling strategy as first sampling the edge set E, and
then sampling A, for each edge in FE. As an edge is a element of V' x V where
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Figure 6: Sample of 3 trait phylogeny

V' is the set of nodes in the phylogeny, we must first determine V' before we
can sample F. Our strategy is to do all of this in a recursive fashion.

Since we cannot assume real world data to be centered, we initially sample a
root 7 ~ N(0,¢'Y) where ¢’ has some distribution D. We then sample b time
steps t; from D, but multiply these timesteps with an exponential decay factor
B = exp(—kd) where d is the depth of the node, and k is some scaling constant.
This gives us b edge times, that will be the times on the b edges emanating
from r. We can then sample each child v of r by sampling the increment of
the edge e = (r,v) from A, ~ N (0, 5t;X). Each of the b children of r can now
be made roots of their own subtree, and this procedure recurses down with
d + 1 as the new depth until some specified max depth. In practice we used
either D as a uniform, or a log-uniform distribution.

Sampling a simple tree with this procedure with d = b = 3 and ¥ = I3, we get
isotropically independently sampled traits with results visualized in figure 6.
Each color represents the depth of the sampling, where a depth 0 means it is
the first split in the tree.

These samples show the kind of data we wish to perform PCA on. Whilst
the current representation is only 3 dimensional, it is not uncommon that the
taxa are very high dimensional vectors. Projecting these trees into a lower
dimensional space, may give intuition about the geometry of the phylogeny.
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Figure 7: Sample of phylogeny with manifold valued traits

The sampling strategy we employ for manifolds, is almost identical to the the
euclidean setting. We again simply let brownian motion run for 5¢; time, and
restart b new processes in the endpoint of the first process. An example on S?
can be seen in figure 7.

5 Principal Component analysis and its vari-
ants

In this section we will introduce a few variants of Principal Component Anal-
ysis (PCA), each adapted to a specific domain. Initially we will introduce the
classic PCA on vectors in RY.

5.1 Principal Component analysis

Given n vectors x; € RY, it is often useful to project these vectors to a linear
subspace of low dimensionality, such as R?. This allows for a visual inspection
of the data, and is frequently used as a way to visualize high dimensional data.
Projecting high dimensional data into a very low dimensional subspace is not
trivial however, inevitably some variance amongst the original vectors x;, is
going to be lost after projection.

32



The simple idea behind PCA, is to first find a 1-dimensional linear subspace
P C R? with basis {\;}, where the projection of all z;’s into P yields the
maximum variance. This process is then repeated, except we now subtract
each z;’s projection onto P from x;. We repeat this until the basis of P spans
R?. We now have a set of basis vectors );, usually referred to as principal
components, where any subspace S,, = span{); | i = l..m}, will give a
projection space that preserves a maximal amount of variance among all z;’s.
We can then use PCA as a dimensionality reduction algorithm, mapping points
in R? into R™ by simply projecting any point x; into S,,.

In practice this repeated process of selecting principal components is ineffec-
tive, and substituted by a decomposition of the data covariance matrix ¥. We
define ¥;; = Cov(z;, z;), and note that the eigenvectors of ¥ will form a basis
that maximizes surplus variance along each axis (Abu-Mostafa et al., 2012).

This is convenient because ¥ can be calculated by simply centering and trans-
posing the data matrix and multiplying by itself, centered; ¥ = ﬁ(X —
X)T(X — X). In practice this allows us to to compute all eigenvectors of ¥,
and then output S, by simply computing the span of the first k eigenvec-
tors. The amount of variance explained by projection onto each eigen vector
is its corresponding eigenvalue. An alternative and numerically more stable
approach is to compute the singular value decomposition (SVD) of the cen-
tered data matrix X — X. This decomposition decomposes X — X into three
matrices

X-X=U0rv" (6)

Where U € R™ 4 has orthonormal columns, V € R%? is orthogonal and T' is
a non-negative diagonal matrix (Abu-Mostafa et al., 2012). A theorem due to
Eckart and Young (1936) shows that the first k£ column vectors of V' form a set
of k principal directions, each with an explained variance of 72, where y; = ['j;,

since the singular values in I' are exactly the square roots of the eigenvalues
of 2.

If we know that our data is gaussian, that is z; ~ N (u, 2), then by definition
3} is the covariance matrix, and the problem of PCA can be reframed into a
parameter estimation of 3. This will be the approach of the following sections,
since we deal with purely gaussian data.

5.2 Phylogenetic Principal Component Analysis

In cases of highly correlated data, PCA may not give results as expected. Con-
sider a simple case of a 3-point dataset x1,x1, x2. If we were to perform PCA
on this simple dataset, the mean would weighed favourably in the direction of
x1, which would give an underestimation of variance in that exact direction.
This is the case in phylogenetic PCA. Phylogenetic trees model the variation
of species, which come from common ancestry. Under a brownian motion
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model, the expected variance between two species from common descent, will
be proportional to the "age” of their first common ancestor. Specifically we
let x1,...,x, € M each represent a representation of some observed species.
We refer to these as taxa, and could be any representation, such as procrustes
aligned landmarks in Polly et al. (2013). Furthermore we refer to each feature
in any x; as a trait. In its original form, phylogenetic PCA is only defined for
M = R?, which we will generalize in later sections.

Our constraints on phylogenetic trees will vary slightly from the original works
of Polly et al. (2013). We allow for each taxa to be sampled at a different
timestep, and whilst the original works do not strictly disallow this case, they
do not explicitly consider it. An example is seen in Figure 8. For our use, we

—
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Figure 8: Example phylogeny with different taxa sample times

only use phylogenetic trees to infer covariance. We define a phylogenetic tree
as a directed graph G = (V, E) where V = T U A, where Where T is the set
of sampled taxa, and A is the ancestor set, similarly to section 4.

In the case of a phylogeny with true mean Z, a standard PCA will skew the
variance in favor of those taxa that share little branch length with others. This
is the exact case of the simple 3-point dataset. Whilst discounting this case is
impossible in the original works of Polly et al. (2013), because C' is singular,
we show a similar example where their method does work.

We will now show a simple calculated example of the effect we are describing.
We will slightly modify the 3 point dataset and illustrate phylogenetic PCA
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with this example. Consider a 3 point data set x1, 2o, 23 € T with

1 09 0
C=109 1 0
0 0 1

In phylogenetic PCA we are interested in finding a true mean of the data,
where we take into consideration the covariance between taxa. Intuitively
we should somehow discount the contributions of x5 from z;, a simple way
of doing this is to set 2] = z1 — 0.929 — Oz3, and 2§, = 29 — 0.92; — Oz3
however we quickly see that a mean of these variables have scaling issues,
since x + x4 = 0.1z1 4 0.1z4, so a sensible answer might be how much should
we scale these? One answer is to instead consider this as a system of linear
equations, and take the mean of the columns of C~!X. This will give us
the case before where we have 2} + z5, and will scale it by Det(C)~!. The
interpretation of this solution, is that C specifies a linear combination of some
uncorrelated variables zy, ..., z,, such that

X=07

Polly et al. (2013) argues that the mean of the columns in Z is an estimation
of the trait values at the root. The reason it takes this form, is because X
simply arises from a latent space model such as equation (4). From this point
of view, the matrix C' simply transforms some latent variables z;, in a way
that is specified by the phylogeny.

This only holds if each z; is a single trait, however if we consider multiple traits,
the same reasoning applies, but this time in the form of a matrix distribution.
We already saw in section 4, how matrix distributions could be described by
two covariance matrices, this is exactly the case here. The strength of this
interpretation is that we can find an exact solution, by simply performing a
maximum likelihood over the distribution of X . In other words, we are looking
for an a, such that p(X;a,Y) is maximized. By (Polly et al., 2013) if 1 is a
n x 1 matrix of 1’s, we have the ancestral values as a solution to the maximum
likelihood problem given as:

a=1"C'y Mo (7)

Notice that the first term (17C~'1)~! is simply a normalizing constant, which
is a simple sum over the entries of C~!. This is at the core of phylogenetic
PCA and we really emphasize that the MLE in (7) is done over the entire tree
in an instant. This does provide a point estimate for the true root, without
any additional knowledge of the internal nodes in the tree, which have been
marginalized out.

As for normal PCA, we still need to calculate the covariance matrix, which
for phylogenetic PCA we will denote 3p. There is an obvious ambiguity
here since matrix distributions is a kronecker product between two covariance
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matrices, but since we know C' upfront, we are interested in estimating the
trait covariance matrix X.

The solution is again to perform a maximum likelihood estimate by maximizing
p(X;a, ). In line with how we found the ancestral traits, the result will again
use C~! to down weigh certain taxa. Again, we can think of the solution as
intuitively discounting some of the covariance observed, as it is due to common
descent, rather than independent variation. The closed form estimate is given

as follows: !

n—1
This calculation again comes as a maximum likelihood estimate of the first
term in the kronecker product ¥ ® C. Phylogenetic PCA now follows in
the same manner as before, by performing SVD on Xp. Because we want
to perform PCA over the covariance of the features, which as described in
section 4 is Y.

Sp = XTc'x (8)

The resulting principal components are now each in the trait space so to speak.
We can forget that they had any phylogenetic covariation when projecting, and
just project them as if they were all independent. The resulting projection will
an identical phylogeny, but where the reduction has happened over the column
space of the matrix distribution.

A simple example of the algorithm applied to a randomly sampled phylogeny
in R? can be seen in figure 9. In this experiment, ¥ = Ids, we also run the

with phpca

without phpca
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Figure 9: Result of phylogenetic PCA
experiment with

0
Y=109 1 0
0 0 1

And get the following result of figure 10
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Figure 10: Result of phylogenetic PCA

5.3 Principal Geodesic Analysis

In section 5.2, we assumed all taxa to be embedded into some space with
linear structure. This is, however, most likely not the case. In their original
works, Polly et al. (2013) use superimposed landmark data, and use their
coordinates as trait values. We argue however, that the space of landmark
data is highly nonlinear and as previously suggested, using a framework as
LDDMM to represent this data would be preferable.

We have seen that the direct mean of variables might not itself be an object
of interest. Our solution to this is to reconsider the definition of a mean value.
The most intuitive definition, is the geometric mean, where we are looking for
an Z that minimizes Y_||z; — Z||? over some dataset z1, ..., 7, € R%. While this
definition gives us an answer that is sound for R¢, it still does not work for
nonlinear geometries.

We do not constrain z in any way, and for that reason cannot guarantee that
it itself represents an object of interest either. To circumvent this, we instead
consider the dataset to be embedded into some riemannian manifold M. This
way, we can use the generalization of the geometric mean, called the Fréchet
mean. Where d is the geodesic distance, we have (Pennec et al., 2020)

s . d(z;,7)2
z arggéﬂz (x4, )

With this, we can now linearize each z; around the fréchet mean and perform
PCA in the tangent space Tz M. The hope is that by choosing a mean that
minimizes the distances to the data points, the distortion that arises from the
linearization via the logairthm map, is as small as possible.
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We formalize this in a similar fashion to Fletcher et al. (2004). In section
5.1, we constructed a family of nested subspaces S,,, which we defined each to
be the span of the first k£ principal components. We want to define a similar
concept on manifolds, where we find some family of submanifolds Hj, where
the variance is minimized along a set of geodesics. First, we define projection
onto a submanifold H to be (Fletcher et al., 2004)

I?

7y (x) = arg min |[Log, (y)
yeH

With this, we can now frame the minimization problem for some neighborhood
Uofz

Uk = arg max > _lILog, (ma ()| (9)
v||=1
Where H is a geodesic submanifold, given as the image of a local linear neigh-
borhood of 0 in 73 M. For a neighborhood U large enough to allow projections
of all z;, we define H = Exp,(span(vy,..,vx—1,v) N U), and it now becomes
clear that we only look for solutions in the tangent space around the mean.

This way, we can hide away the nonlinearities in the geometry by considering
linearized neighborhoods around the data. We will not prove that algorithm 1
approximates the problem well, but refer the reader to Fletcher et al. (2004).

Algorithm 1 Principal Geodesic Analysis

T« arg mingepn . d(z;, 1)?
for z; do
yi < Logg(;)
end for
Y+ ﬁYTY
ULV’ < %
return V, T’

In its essence, we take each data point x; € M and linearize it around z
by finding minimizing geodesics. Thus PGA factors in the nonlinearities of
M in two ways; 1. We constrain the sample mean. 2. We obtain vector
representations of each x; via a first order approximation of the geometry
around the mean.

The algorithm reduces to something extremely simple, that is the standard
PCA problem on the vector space T; M. It is convenient to work with, as no
extra effort is really required, except finding the fréchet mean, and linearizing
locally. This also speaks to some of the limitations, as distortions will be more
severe over greater distances. It is problematic because brownian motion is
not preserved under arbitrary Log maps. This will be a key insight that we
will use when presenting our own solution.
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It is also important to note that algorithm 1 does not give a solution to (9),
but rather provides an approximate solution via an approximation of the pro-
jection operator wg. This algorithm does not have quite the same properties
as the classical PCA, because we lose some of the connection to the underlying
gaussianity from linearizing locally.

5.4 Phylogenetic Principal Geodesic Analysis

To account for phylogenetic covariance in principal geodesic analysis, we should
consider two things; 1. How do we find the ancestral values a € M. 2. Is
the calculation of the phylogenetic covariance matrix ¥ p unchanged from its
original form in (8).

Finding the true root a suddenly has two important reasons. First it is im-
portant to choose the base point such that distortions from linearization is
minimal. And secondly it is important to choose it in such a way that it does
not skew surplus variance in the direction of independent taxa. It becomes a
hard trade-off problem, where our algorithm chooses finding the true a which
was the starting point of brownian motion.

We will sketch out an iterative minimization problem that shares a common
theme of linearizing neighborhoods and performing operations in the tangent
space. The method boils down to approximating the ancestral tangent a' as
the ancestral values of the data under a Log mapping, and then repeatedly
projecting the ancestral tangent back onto M.

The idea is somewhat similar to PGA, where we prefer to simply work in the
tangent space of a point where distortions are not too high. The only difference
being how we estimate our base point a.

Algorithm 2 Approximate Nonlinear Ancestral Values
ag < o
do
for z; do
yi < Log,, (i)
end for
at«+— (1Tcty1Toty
a1 < Exp,, (a')
while [|a'|| > €

Algorithm 2 produces an approximate solution a, for some convergence cri-
terion e. This algorithm does not prevent cycling, so selecting the stopping
criterion accordingly is important.

The problem (and strength) of this algorithm is its approximation. It is a
problem because a will most likely not be the true starting point of the brow-
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nian motion process. We have to keep in mind that a' is an unbiased estimator
for the starting point of brownian motion, under the assumption that all the
tangents y; come from a matrix distribution defined in a tangent space. This
means that the variations in our ancestral tangent will have the effects of the
distortions in its estimation.

This is the idea behind iteratively sampling estimates of a’, we hope that the
effects of linearization iteratively become more and more insignificant. If we
wanted to find the exact mean, one would need to perform (and first define) a
maximum likelihood estimate over the distribution of phylogenies. Note that
we would need a much higher dimensional manifold to represent our data in
this case, since we would need to represent each phylogeny as a single point
on a manifold itself.

After the ancestral root has been estimated a € M, all that is left to do is
linearize each point y; = Log,(z;), and perform PCA on the vectors yi, ..., y,
using the true mean a. This gives us figure 11.
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Figure 11: Left: Manifold data. Right: Projected data

Although perhaps not easily visualized on figure 11, the linearization is clearly
visible. The projection looks a lot like a representation of the local neighbor-
hood. This example is of course somewhat trivial, since the dimension of the
manifold is the same as the projection space. In later examples, we will show
this projection for very high dimensional manifolds.

6 Phylogenetic Projection by Increment Esti-
mation
6.1 Underlying theory

In section 5.2 we introduced phylogenetic PCA, where we used the phylogeny
matrix C', to down weigh covariance coming from common descent. We will
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now introduce an alternate method which uses a similar tactic to estimate the
inner nodes of the phylogeny, and project afterwards. We need a good way
to provide an estimate Z for any unseen node in the tree. Harmon (2019)
provides both a maximum likelihood approach, as well as a bayesian method.
Initially we will show the algorithm with a simple point estimate using a
maximum likelihood. We will note that we only perform extremely simple and
un-optimal estimates of inner nodes to demonstrate the algorithm. For any
real use, we reccomend using any ancestral state reconstruction algorithm as
a preprocessing step.

We are going to use C' as in section 5.2, and use the likelihood obtained from
brownian motion in section 4 due to Harmon (2019). Letting V = X ® C, and
D the nd x d design matrix, we have

exp (—3(z — Da) "'V~ (z — Da))
(27)mddet (V)

L(z|a, V)= (10)

Which come exactly from thee matrix distribution, just written out with a
design matrix. A central observation is that any ancestor a, depends only on
the vertices in the rooted subtree at a. At the root ancestor a, C' is the exact
same as in section 5.2, however any subtree will have a different C' which is a
partition of C' viewed as a block matrix, except for a constant which we can
subtract.

We will first introduce some notation, and afterward introduce a lemma which
greatly increases computational speed. We denote the phylogeny matrix C,
to be the phylogeny matrix of the subphylogeny rooted in u and X, the
datamatrix of all leaves in the subtree rooted at w.

Theorem 6.1 (Block diagonal lemma). Given phylogeny G = (V, E), for any
internal node v with m direct descendants v?, the phylogeny matrix C,, is given
by

0 Cvm—l—(vln—ut)

Proof. First, it is clear that there must be 0s except for the block diagonal,
since the covariance of any two nodes in two different subphylogenies is 0.
Take now any pair z;,z; such that they belong to the same subphylogeny
of u, rooted at v/, with indicies k,l respectively in their subphylogeny. By
definition (Cy )y is the time of common ancestry, and so (C,);; should be
exactly their time of common ancestry in their subphylogeny, plus the time
along the edge (u,v’) which is given by (v; — u;). Notice that two nodes xy, x5
in a subphylogeny G’ = (V' E’) with path from roots m, 7o C E’, which share
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the first edge going out from the root (r,v,) has covariance

Cov(xy,x9) = Z (vy — uy)

(u,v) €T N2

= ((v)e — 1) + Z (ve — ue) (11)

(u,v)emNma\{(r,vr)}

The first term always exists because we assumed the two nodes shared ancestry,
that is m Nmy # @. This gives rise to a telescoping sum, such that there is
a branching node (u,b) € m N w2, which gives Cov(zy,z2) = b — . Now,
any phylogeny matrix for the sub phylogeny rooted at w in the path m N 7y,
simply corresponds to a sequence of terms in (11), which telescopes to by — u;
where b is the branching node. With this, calculating the covariance in a
phylogeny, is simply the covariance in the subphylogeny at any node a, plus
the time between the phylogeny and subphylogeny a; — ;. Thus the adjusted
phylogeny matrix becomes (C,,)i; = (Cy ) + (v — uy). O

A simple and intuitive way to think about this, is that adding another edge
before the root, simply adds a single term to each entry in C' which is the
time along that edge. Alternatively, the time on a path in the phylogeny, is
completely determined by its endpoints.

This gives rise to a recursive definition, where we estimate covariances of larger
and larger subtrees of GG, starting from the bottom. The idea is now to never
double count any covariance, by considering only differences between nodes
in G and their ancestors. Since the Covariance matrix ¥ oc X' X, is simply
a matrix prduct, we can decompose the covariance matrix into a sum of self-
products of each datapoint

Lemma 6.2 (Sum-Decomposition of Covariance matrix). Given n datapoints
21, ...7, € R% and their corresponding data matrix X € R™*? we can decom-
pose the featurewise covariance matrix into a sum of self-products

EocXTX:inTxi

Proof. By the definition of the matrix product we have

n

(XTX),e = _Z(XT)MXi



Where the third equality is due to (xTx)n. = z,x. because x is a 1 X d matrix
and thus is an implicit sum over a single term. O

We can sum over each independent variation in G by
(

oo !Erl— P _Z)— " s "

(u)EE

Where each u,v is either the result of an ancstral state reconstruction proce-
dure of L, or a leaf node which is known. As we prefaced the section with, we
recommend estimating the internal nodes as a preprocessing step.

This may initially seem odd since each vertex is centered differently, however,
we can imagine this process as being equivalent to calculating the covariance
matrix for all variations centered in the origin. This is a direct result from
the independent steps property. All edges e = (u,v) can be thought of as a
single increment A., where A, ~ N (u,tX). Now, we know both ¢ and u, this

means we can normalize each variation with A\;i“, where t = v; — u;. This

gives equation (12) directly, as simply an unbiased estimator of ¥, given a set
of increments.

Calculating ¥ and estimating inner nodes constitutes fitting the model, and
now the question of projection remains. Since we only measured independent
variations, it is natural to only project data in this setting too.

Definition 6.1 (Ancestral projection). Where a,, € A is the direct ancestor of
u € V\{r} and r is the root of G, and 7 specifies a projection parameterized
by G, we have ancestral projection A(7¢)

A(rg)(ay) + mg(u — a,,) if u has a parent.

e (u) otherwise. (13)

Atre)w) = {

This definition is rather natural; to project a point u, we must first remove its
variation of ancestral relations u — a,,, and then project. This projection how-
ever, is relative to the ancestor, so we must also add the projection A(mg)(ay)
to compensate. This gives rise to a top down procedure where we recursively
project each estimated inner node.

Theorem 6.3 (Linear Ancestral Projection). If 7 is linear, that is mg(a+b) =
ma(a) + ma(b) then A(me)(u) = ma(u).

This is because the sum telescopes, that is 7¢(u—a,) = 7¢(u) — g (a,) where
each previous term had a single w5(a,), and thus will cancel out.

Luckily, we have seen many examples of finding linear projection operators of
this kind. We can find one by simply performing an eigen-decomposition of ¥
as in classical PCA. Denoting Uy the matrix with the first k& eigen vectors of
Y as columns, sorted in decreasing order by their corresponding eigenvalue.
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We then form the linear projection operator wf(z) = zUj, as we would in
classical PCA.

The central idea behind this algorithm, is that by looking only on the incre-
ments between each node in the phylogeny, the effect of linearization should
be smaller when adapting this algorithm in a manifold setting.

We will only propose a way to adapt this algorithm to Lie groups, however it is
only due to the simplicity in finding consistent bases between tangent spaces.

As before, we can imagine a set of edges (u,v) € G x G, where G is the Lie
group we are considering. Again, recall that a Lie group is roughly speaking a
manifold with additional structure in the tangent space of the identity element.

We propose to define the increment of an edge e = (u,v) as the linearization
Log,(v). Now, for each edge (u,v) we get an increment in 7;,G, we can now
use the left invariant fields X;(u) which arose from the push forward (L,,).(e;)
(where e; was a basis element for the lie algebra), to calculate the outer prod-
ucts A A in the lie algebra, and obtain an estimate of ¥. We do not provide
an implementation of the manifold variant, nor proof of correctness. We sim-
ply postulate that considering only local increments could significantly reduce
the effects of distortion.

6.2 Algorithm

We will now provide pseudocode for and general implementation details for
the projection method described in section 6.1. As input to the algorithm, we
assume we are given a phylogeny G = (V, E) where only the leaves 7 have
known values. We also assume we are given a scale parameter o2 and know d
where 7 C RY. We first introduce the algorithm for determining ¢

44



Algorithm 3 Fitting Phylogenetic Projection by Ancestor Estimation

1: procedure RECURSE_FIT(T = (Vr, Er))
2 z < ROOT(T)

3 for (z,v) € Er do

4 T’ < SUBTREE(v, T)

5: RECURSE_FIT(T")

6 end for

7 C, < C via theorem 6.1

8 T+ (1TC;M) MO Ly

9: for (z,v) € Er do

10: Yag— Xg+ %

11: end for

12: end procedure

13: for u € T do

14: M, + u

15: Yo+ 0dxd

16: end for

17: RECURSE_FIT(G)

18: Yg ‘El%lzc

19: return EIGEN_DECOMPOSITION(X)

Where SUBTREE(v,T') returns the subtree of T' rooted at v and the data
matrix Ly consists of all leaves in a subtree T

The algorithm has initialization steps on line 13-16, and calls a recursive sub-
routine RECURSE _FIT on the root of the phylogenetic tree. The subroutine
calculates local covariances for each internal node a € A, by first performing
a crude estimate of the internal node itself on line 8, centering and then by
lemma 6.2, on line 9 we store the covariance that arises in the branching point
at the current inner node we are processing.

The subroutine recurses before taking any action, which is equivalent to start-
ing the algorithm at the leaves. This is important because (10) is completely
determined by all direct descendants of any node. By performing inference
bottom up, we ensure that at any branching point a, the subtree at a is com-
pletely determined, except for the root, a.

7 Results

7.1 Error Propagation

We will now show a series observations, made about the different algorithms
we introduce. We start by considering the internal estimates of the phylogeny.
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Since we used a simple point estimate each internal node, we expect to propa-
gate uncertainty upwards in the tree. To verify this claim, we generated 100b
different phylogenetic trees of species in R?, each with a constant timestep
between generations, but with b different branching factors 3, ie. each species
s splits into 8 new ones after the constant timestep. We also expect a variance
along each axis to be 1 for each generation. We then run algorithm 3 on the
1000 trees, and for each, choose a random path from root to leaf. We then
at each depth, measure the norm of the difference between the true ancestor
x, and the ancestor & estimated via (10). Figure 12 shows both the mean
estimation error in each internal node (dashed line) and standard deviation

(filled region).

3.0 branch factor

S S— e —— 2

3.0

0.0

3.0

Norm of difference ||z — Z||

0.0

Depth

Figure 12: Uncertainty in ancestral estimation

Interestingly enough figure 12 empirically implies that error does not propa-
gate as previously assumed. As expected however, the uncertainty is higher
for lower branch factors. This is because we are trying to estimate nodes
from fewer children, which as expected should give higher uncertainty. In our
synthetic models we do not assume a constant time step for each generation,
an example is figure 8 where the branch length decays exponentially over the
generations.

As is implied by theorem 6.3, projection in this algorithm is rather simple.
Whilst in principle we only project nodes with respect to their direct parents,
theorem 6.3 tells us that this projection is not directly skewed by poor ancestral
estimates. One may fear that poor ancestral estimates ruins the projections
of the tips of the tree, in an error propagating fashion. This is however not
the case. For any projection found via eigen decomposition of some covariance
matrix Xg, the projection of the entire tree is parameterized only by Y. This
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implies that one could completely alter the tree, or throw away the estimates
of inner nodes, without affection projection of observed nodes.

7.2 Visual results

We repeated the same experiment of figure 10, using our own propsed al-
gorithm, and we get the result of figure 13 Next, we wanted to apply our

with increment estimation

without pca

1.0} Depth

1 S
4

N

(
2

Figure 13: Projection by increment estimation

algorithms to a real world dataset. Due to the public availability we decided
to attempt it on a subset of birds from the AVONET dataset (Tobias et al.,
2022). We chose an arbitrary group of subspecies, with the following phy-
logeny seen in figure 14. The phylogeny contains a set of similar birds, with
corresponding trait values. We used the 11 trait values

Beak.Length_ Culmen e Tarsus.Length e Hand-Wing.Index

Beak.Length_Nares e Wing.Length
e Tail.Length

Beak.Width e Kipps.Distance

Beak.Depth Secondary1 o Mass

And applied both phylo PCA and our own algorithm of section 6.1. The result
can be seen in figure 15 Here, we have plotted the estimated internal nodes
on the right plot, and we do believe that they most likely are somewhat poor
estimates of the true ancestral state values. We used the exact algorithm
described, and did not preprocess with a better ancestral state reconstruction
algorithm. We do believe that doing so could improve performance.
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Figure 14: Subphylogeny of AVONET
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Figure 15: Projections of AVONET. Right: Phylo PCA. Left: Algorithm of

section 6.1

It is interesting to see that the resemblance between the two methods is quite
apparent. They both look almost identical ,except for a rotation and a scaling.
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8 Future Work

There are still many open ended questions left. First a natural future project
would be to provide a full implementation and generalization of the algorithm
in section 6. Next an application of the algorithm on LDDMM representa-
tions of landmarks could provide interesting insight into the structure of the
landmark spaces.

We also pose as an open question, whether or not the matrix W of equation
(5), can be estimated from the Stratonovich equation, rather than from lo-
cal linearizations of increments. If this was indeed possible, then one could
construct X from W, without the distortions from linearization.

In general, it is hard to quantify whether or not one projection algorithm
is better than another. Our adaptation in section 6 is theoretically only an
improvement due to smaller effects of distortion. Besides that, the algorithm
is identical with regular phylogenetic PCA. Finding an quantifying how large
this improvement is depends both on the geometry of the space in which one
applies the algorithm, and also on specific sampled data. If we had a simple
measure that could measure the effects of these distortions, improvements
would be much easier to track. In the end projections are just that, they
are somewhat arbitrary, and many of the popular dimensionality reduction
methods such as UMAP (McInnes et al., 2018) express what they believe is
an optimal reduction problem, and optimize over it.
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